Skip to content

pydantic_ai.models.function

A model controlled by a local function.

FunctionModel is similar to TestModel, but allows greater control over the model's behavior.

Its primary use case is for more advanced unit testing than is possible with TestModel.

Here's a minimal example:

function_model_usage.py
from pydantic_ai import Agent
from pydantic_ai.messages import ModelMessage, ModelResponse
from pydantic_ai.models.function import FunctionModel, AgentInfo

my_agent = Agent('openai:gpt-4o')


async def model_function(
    messages: list[ModelMessage], info: AgentInfo
) -> ModelResponse:
    print(messages)
    """
    [
        ModelRequest(
            parts=[
                UserPromptPart(
                    content='Testing my agent...',
                    timestamp=datetime.datetime(...),
                    part_kind='user-prompt',
                )
            ],
            kind='request',
        )
    ]
    """
    print(info)
    """
    AgentInfo(
        function_tools=[], allow_text_result=True, result_tools=[], model_settings=None
    )
    """
    return ModelResponse.from_text('hello world')


async def test_my_agent():
    """Unit test for my_agent, to be run by pytest."""
    with my_agent.override(model=FunctionModel(model_function)):
        result = await my_agent.run('Testing my agent...')
        assert result.data == 'hello world'

See Unit testing with FunctionModel for detailed documentation.

FunctionModel dataclass

Bases: Model

A model controlled by a local function.

Apart from __init__, all methods are private or match those of the base class.

Source code in pydantic_ai_slim/pydantic_ai/models/function.py
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
@dataclass(init=False)
class FunctionModel(Model):
    """A model controlled by a local function.

    Apart from `__init__`, all methods are private or match those of the base class.
    """

    function: FunctionDef | None = None
    stream_function: StreamFunctionDef | None = None

    @overload
    def __init__(self, function: FunctionDef) -> None: ...

    @overload
    def __init__(self, *, stream_function: StreamFunctionDef) -> None: ...

    @overload
    def __init__(self, function: FunctionDef, *, stream_function: StreamFunctionDef) -> None: ...

    def __init__(self, function: FunctionDef | None = None, *, stream_function: StreamFunctionDef | None = None):
        """Initialize a `FunctionModel`.

        Either `function` or `stream_function` must be provided, providing both is allowed.

        Args:
            function: The function to call for non-streamed requests.
            stream_function: The function to call for streamed requests.
        """
        if function is None and stream_function is None:
            raise TypeError('Either `function` or `stream_function` must be provided')
        self.function = function
        self.stream_function = stream_function

    async def agent_model(
        self,
        *,
        function_tools: list[ToolDefinition],
        allow_text_result: bool,
        result_tools: list[ToolDefinition],
    ) -> AgentModel:
        return FunctionAgentModel(
            self.function, self.stream_function, AgentInfo(function_tools, allow_text_result, result_tools, None)
        )

    def name(self) -> str:
        labels: list[str] = []
        if self.function is not None:
            labels.append(self.function.__name__)
        if self.stream_function is not None:
            labels.append(f'stream-{self.stream_function.__name__}')
        return f'function:{",".join(labels)}'

__init__

__init__(function: FunctionDef) -> None
__init__(*, stream_function: StreamFunctionDef) -> None
__init__(
    function: FunctionDef,
    *,
    stream_function: StreamFunctionDef
) -> None
__init__(
    function: FunctionDef | None = None,
    *,
    stream_function: StreamFunctionDef | None = None
)

Initialize a FunctionModel.

Either function or stream_function must be provided, providing both is allowed.

Parameters:

Name Type Description Default
function FunctionDef | None

The function to call for non-streamed requests.

None
stream_function StreamFunctionDef | None

The function to call for streamed requests.

None
Source code in pydantic_ai_slim/pydantic_ai/models/function.py
52
53
54
55
56
57
58
59
60
61
62
63
64
def __init__(self, function: FunctionDef | None = None, *, stream_function: StreamFunctionDef | None = None):
    """Initialize a `FunctionModel`.

    Either `function` or `stream_function` must be provided, providing both is allowed.

    Args:
        function: The function to call for non-streamed requests.
        stream_function: The function to call for streamed requests.
    """
    if function is None and stream_function is None:
        raise TypeError('Either `function` or `stream_function` must be provided')
    self.function = function
    self.stream_function = stream_function

AgentInfo dataclass

Information about an agent.

This is passed as the second to functions used within FunctionModel.

Source code in pydantic_ai_slim/pydantic_ai/models/function.py
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
@dataclass(frozen=True)
class AgentInfo:
    """Information about an agent.

    This is passed as the second to functions used within [`FunctionModel`][pydantic_ai.models.function.FunctionModel].
    """

    function_tools: list[ToolDefinition]
    """The function tools available on this agent.

    These are the tools registered via the [`tool`][pydantic_ai.Agent.tool] and
    [`tool_plain`][pydantic_ai.Agent.tool_plain] decorators.
    """
    allow_text_result: bool
    """Whether a plain text result is allowed."""
    result_tools: list[ToolDefinition]
    """The tools that can called as the final result of the run."""
    model_settings: ModelSettings | None
    """The model settings passed to the run call."""

function_tools instance-attribute

function_tools: list[ToolDefinition]

The function tools available on this agent.

These are the tools registered via the tool and tool_plain decorators.

allow_text_result instance-attribute

allow_text_result: bool

Whether a plain text result is allowed.

result_tools instance-attribute

result_tools: list[ToolDefinition]

The tools that can called as the final result of the run.

model_settings instance-attribute

model_settings: ModelSettings | None

The model settings passed to the run call.

DeltaToolCall dataclass

Incremental change to a tool call.

Used to describe a chunk when streaming structured responses.

Source code in pydantic_ai_slim/pydantic_ai/models/function.py
107
108
109
110
111
112
113
114
115
116
117
@dataclass
class DeltaToolCall:
    """Incremental change to a tool call.

    Used to describe a chunk when streaming structured responses.
    """

    name: str | None = None
    """Incremental change to the name of the tool."""
    json_args: str | None = None
    """Incremental change to the arguments as JSON"""

name class-attribute instance-attribute

name: str | None = None

Incremental change to the name of the tool.

json_args class-attribute instance-attribute

json_args: str | None = None

Incremental change to the arguments as JSON

DeltaToolCalls module-attribute

DeltaToolCalls: TypeAlias = dict[int, DeltaToolCall]

A mapping of tool call IDs to incremental changes.

FunctionDef module-attribute

A function used to generate a non-streamed response.

StreamFunctionDef module-attribute

A function used to generate a streamed response.

While this is defined as having return type of AsyncIterator[Union[str, DeltaToolCalls]], it should really be considered as Union[AsyncIterator[str], AsyncIterator[DeltaToolCalls],

E.g. you need to yield all text or all DeltaToolCalls, not mix them.

FunctionAgentModel dataclass

Bases: AgentModel

Implementation of AgentModel for FunctionModel.

Source code in pydantic_ai_slim/pydantic_ai/models/function.py
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
@dataclass
class FunctionAgentModel(AgentModel):
    """Implementation of `AgentModel` for [FunctionModel][pydantic_ai.models.function.FunctionModel]."""

    function: FunctionDef | None
    stream_function: StreamFunctionDef | None
    agent_info: AgentInfo

    async def request(
        self, messages: list[ModelMessage], model_settings: ModelSettings | None
    ) -> tuple[ModelResponse, usage.Usage]:
        agent_info = replace(self.agent_info, model_settings=model_settings)

        assert self.function is not None, 'FunctionModel must receive a `function` to support non-streamed requests'
        if inspect.iscoroutinefunction(self.function):
            response = await self.function(messages, agent_info)
        else:
            response_ = await _utils.run_in_executor(self.function, messages, agent_info)
            assert isinstance(response_, ModelResponse), response_
            response = response_
        # TODO is `messages` right here? Should it just be new messages?
        return response, _estimate_usage(chain(messages, [response]))

    @asynccontextmanager
    async def request_stream(
        self, messages: list[ModelMessage], model_settings: ModelSettings | None
    ) -> AsyncIterator[StreamedResponse]:
        assert (
            self.stream_function is not None
        ), 'FunctionModel must receive a `stream_function` to support streamed requests'
        response_stream = PeekableAsyncStream(self.stream_function(messages, self.agent_info))

        first = await response_stream.peek()
        if isinstance(first, _utils.Unset):
            raise ValueError('Stream function must return at least one item')

        yield FunctionStreamedResponse(response_stream)

FunctionStreamedResponse dataclass

Bases: StreamedResponse

Implementation of StreamedResponse for FunctionModel.

Source code in pydantic_ai_slim/pydantic_ai/models/function.py
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
@dataclass
class FunctionStreamedResponse(StreamedResponse):
    """Implementation of `StreamedResponse` for [FunctionModel][pydantic_ai.models.function.FunctionModel]."""

    _iter: AsyncIterator[str | DeltaToolCalls]
    _timestamp: datetime = field(default_factory=_utils.now_utc)

    def __post_init__(self):
        self._usage += _estimate_usage([])

    async def _get_event_iterator(self) -> AsyncIterator[ModelResponseStreamEvent]:
        async for item in self._iter:
            if isinstance(item, str):
                response_tokens = _estimate_string_tokens(item)
                self._usage += usage.Usage(response_tokens=response_tokens, total_tokens=response_tokens)
                yield self._parts_manager.handle_text_delta(vendor_part_id='content', content=item)
            else:
                delta_tool_calls = item
                for dtc_index, delta_tool_call in delta_tool_calls.items():
                    if delta_tool_call.json_args:
                        response_tokens = _estimate_string_tokens(delta_tool_call.json_args)
                        self._usage += usage.Usage(response_tokens=response_tokens, total_tokens=response_tokens)
                    maybe_event = self._parts_manager.handle_tool_call_delta(
                        vendor_part_id=dtc_index,
                        tool_name=delta_tool_call.name,
                        args=delta_tool_call.json_args,
                        tool_call_id=None,
                    )
                    if maybe_event is not None:
                        yield maybe_event

    def timestamp(self) -> datetime:
        return self._timestamp