Skip to content

pydantic_ai.models.groq

Setup

For details on how to set up authentication with this model, see model configuration for Groq.

GroqModelName module-attribute

GroqModelName = Literal[
    "llama-3.3-70b-versatile",
    "llama-3.1-70b-versatile",
    "llama3-groq-70b-8192-tool-use-preview",
    "llama3-groq-8b-8192-tool-use-preview",
    "llama-3.1-70b-specdec",
    "llama-3.1-8b-instant",
    "llama-3.2-1b-preview",
    "llama-3.2-3b-preview",
    "llama-3.2-11b-vision-preview",
    "llama-3.2-90b-vision-preview",
    "llama3-70b-8192",
    "llama3-8b-8192",
    "mixtral-8x7b-32768",
    "gemma2-9b-it",
    "gemma-7b-it",
]

Named Groq models.

See the Groq docs for a full list.

GroqModel dataclass

Bases: Model

A model that uses the Groq API.

Internally, this uses the Groq Python client to interact with the API.

Apart from __init__, all methods are private or match those of the base class.

Source code in pydantic_ai_slim/pydantic_ai/models/groq.py
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
@dataclass(init=False)
class GroqModel(Model):
    """A model that uses the Groq API.

    Internally, this uses the [Groq Python client](https://github.com/groq/groq-python) to interact with the API.

    Apart from `__init__`, all methods are private or match those of the base class.
    """

    model_name: GroqModelName
    client: AsyncGroq = field(repr=False)

    def __init__(
        self,
        model_name: GroqModelName,
        *,
        api_key: str | None = None,
        groq_client: AsyncGroq | None = None,
        http_client: AsyncHTTPClient | None = None,
    ):
        """Initialize a Groq model.

        Args:
            model_name: The name of the Groq model to use. List of model names available
                [here](https://console.groq.com/docs/models).
            api_key: The API key to use for authentication, if not provided, the `GROQ_API_KEY` environment variable
                will be used if available.
            groq_client: An existing
                [`AsyncGroq`](https://github.com/groq/groq-python?tab=readme-ov-file#async-usage)
                client to use, if provided, `api_key` and `http_client` must be `None`.
            http_client: An existing `httpx.AsyncClient` to use for making HTTP requests.
        """
        self.model_name = model_name
        if groq_client is not None:
            assert http_client is None, 'Cannot provide both `groq_client` and `http_client`'
            assert api_key is None, 'Cannot provide both `groq_client` and `api_key`'
            self.client = groq_client
        elif http_client is not None:
            self.client = AsyncGroq(api_key=api_key, http_client=http_client)
        else:
            self.client = AsyncGroq(api_key=api_key, http_client=cached_async_http_client())

    async def agent_model(
        self,
        *,
        function_tools: list[ToolDefinition],
        allow_text_result: bool,
        result_tools: list[ToolDefinition],
    ) -> AgentModel:
        check_allow_model_requests()
        tools = [self._map_tool_definition(r) for r in function_tools]
        if result_tools:
            tools += [self._map_tool_definition(r) for r in result_tools]
        return GroqAgentModel(
            self.client,
            self.model_name,
            allow_text_result,
            tools,
        )

    def name(self) -> str:
        return f'groq:{self.model_name}'

    @staticmethod
    def _map_tool_definition(f: ToolDefinition) -> chat.ChatCompletionToolParam:
        return {
            'type': 'function',
            'function': {
                'name': f.name,
                'description': f.description,
                'parameters': f.parameters_json_schema,
            },
        }

__init__

__init__(
    model_name: GroqModelName,
    *,
    api_key: str | None = None,
    groq_client: AsyncGroq | None = None,
    http_client: AsyncClient | None = None
)

Initialize a Groq model.

Parameters:

Name Type Description Default
model_name GroqModelName

The name of the Groq model to use. List of model names available here.

required
api_key str | None

The API key to use for authentication, if not provided, the GROQ_API_KEY environment variable will be used if available.

None
groq_client AsyncGroq | None

An existing AsyncGroq client to use, if provided, api_key and http_client must be None.

None
http_client AsyncClient | None

An existing httpx.AsyncClient to use for making HTTP requests.

None
Source code in pydantic_ai_slim/pydantic_ai/models/groq.py
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
def __init__(
    self,
    model_name: GroqModelName,
    *,
    api_key: str | None = None,
    groq_client: AsyncGroq | None = None,
    http_client: AsyncHTTPClient | None = None,
):
    """Initialize a Groq model.

    Args:
        model_name: The name of the Groq model to use. List of model names available
            [here](https://console.groq.com/docs/models).
        api_key: The API key to use for authentication, if not provided, the `GROQ_API_KEY` environment variable
            will be used if available.
        groq_client: An existing
            [`AsyncGroq`](https://github.com/groq/groq-python?tab=readme-ov-file#async-usage)
            client to use, if provided, `api_key` and `http_client` must be `None`.
        http_client: An existing `httpx.AsyncClient` to use for making HTTP requests.
    """
    self.model_name = model_name
    if groq_client is not None:
        assert http_client is None, 'Cannot provide both `groq_client` and `http_client`'
        assert api_key is None, 'Cannot provide both `groq_client` and `api_key`'
        self.client = groq_client
    elif http_client is not None:
        self.client = AsyncGroq(api_key=api_key, http_client=http_client)
    else:
        self.client = AsyncGroq(api_key=api_key, http_client=cached_async_http_client())

GroqAgentModel dataclass

Bases: AgentModel

Implementation of AgentModel for Groq models.

Source code in pydantic_ai_slim/pydantic_ai/models/groq.py
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
@dataclass
class GroqAgentModel(AgentModel):
    """Implementation of `AgentModel` for Groq models."""

    client: AsyncGroq
    model_name: str
    allow_text_result: bool
    tools: list[chat.ChatCompletionToolParam]

    async def request(
        self, messages: list[ModelMessage], model_settings: ModelSettings | None
    ) -> tuple[ModelResponse, usage.Usage]:
        response = await self._completions_create(messages, False, model_settings)
        return self._process_response(response), _map_usage(response)

    @asynccontextmanager
    async def request_stream(
        self, messages: list[ModelMessage], model_settings: ModelSettings | None
    ) -> AsyncIterator[StreamedResponse]:
        response = await self._completions_create(messages, True, model_settings)
        async with response:
            yield await self._process_streamed_response(response)

    @overload
    async def _completions_create(
        self, messages: list[ModelMessage], stream: Literal[True], model_settings: ModelSettings | None
    ) -> AsyncStream[ChatCompletionChunk]:
        pass

    @overload
    async def _completions_create(
        self, messages: list[ModelMessage], stream: Literal[False], model_settings: ModelSettings | None
    ) -> chat.ChatCompletion:
        pass

    async def _completions_create(
        self, messages: list[ModelMessage], stream: bool, model_settings: ModelSettings | None
    ) -> chat.ChatCompletion | AsyncStream[ChatCompletionChunk]:
        # standalone function to make it easier to override
        if not self.tools:
            tool_choice: Literal['none', 'required', 'auto'] | None = None
        elif not self.allow_text_result:
            tool_choice = 'required'
        else:
            tool_choice = 'auto'

        groq_messages = list(chain(*(self._map_message(m) for m in messages)))

        model_settings = model_settings or {}

        return await self.client.chat.completions.create(
            model=str(self.model_name),
            messages=groq_messages,
            n=1,
            parallel_tool_calls=True if self.tools else NOT_GIVEN,
            tools=self.tools or NOT_GIVEN,
            tool_choice=tool_choice or NOT_GIVEN,
            stream=stream,
            max_tokens=model_settings.get('max_tokens', NOT_GIVEN),
            temperature=model_settings.get('temperature', NOT_GIVEN),
            top_p=model_settings.get('top_p', NOT_GIVEN),
            timeout=model_settings.get('timeout', NOT_GIVEN),
        )

    @staticmethod
    def _process_response(response: chat.ChatCompletion) -> ModelResponse:
        """Process a non-streamed response, and prepare a message to return."""
        timestamp = datetime.fromtimestamp(response.created, tz=timezone.utc)
        choice = response.choices[0]
        items: list[ModelResponsePart] = []
        if choice.message.content is not None:
            items.append(TextPart(content=choice.message.content))
        if choice.message.tool_calls is not None:
            for c in choice.message.tool_calls:
                items.append(
                    ToolCallPart.from_raw_args(tool_name=c.function.name, args=c.function.arguments, tool_call_id=c.id)
                )
        return ModelResponse(items, timestamp=timestamp)

    @staticmethod
    async def _process_streamed_response(response: AsyncStream[ChatCompletionChunk]) -> GroqStreamedResponse:
        """Process a streamed response, and prepare a streaming response to return."""
        peekable_response = _utils.PeekableAsyncStream(response)
        first_chunk = await peekable_response.peek()
        if isinstance(first_chunk, _utils.Unset):
            raise UnexpectedModelBehavior('Streamed response ended without content or tool calls')

        return GroqStreamedResponse(peekable_response, datetime.fromtimestamp(first_chunk.created, tz=timezone.utc))

    @classmethod
    def _map_message(cls, message: ModelMessage) -> Iterable[chat.ChatCompletionMessageParam]:
        """Just maps a `pydantic_ai.Message` to a `groq.types.ChatCompletionMessageParam`."""
        if isinstance(message, ModelRequest):
            yield from cls._map_user_message(message)
        elif isinstance(message, ModelResponse):
            texts: list[str] = []
            tool_calls: list[chat.ChatCompletionMessageToolCallParam] = []
            for item in message.parts:
                if isinstance(item, TextPart):
                    texts.append(item.content)
                elif isinstance(item, ToolCallPart):
                    tool_calls.append(_map_tool_call(item))
                else:
                    assert_never(item)
            message_param = chat.ChatCompletionAssistantMessageParam(role='assistant')
            if texts:
                # Note: model responses from this model should only have one text item, so the following
                # shouldn't merge multiple texts into one unless you switch models between runs:
                message_param['content'] = '\n\n'.join(texts)
            if tool_calls:
                message_param['tool_calls'] = tool_calls
            yield message_param
        else:
            assert_never(message)

    @classmethod
    def _map_user_message(cls, message: ModelRequest) -> Iterable[chat.ChatCompletionMessageParam]:
        for part in message.parts:
            if isinstance(part, SystemPromptPart):
                yield chat.ChatCompletionSystemMessageParam(role='system', content=part.content)
            elif isinstance(part, UserPromptPart):
                yield chat.ChatCompletionUserMessageParam(role='user', content=part.content)
            elif isinstance(part, ToolReturnPart):
                yield chat.ChatCompletionToolMessageParam(
                    role='tool',
                    tool_call_id=_guard_tool_call_id(t=part, model_source='Groq'),
                    content=part.model_response_str(),
                )
            elif isinstance(part, RetryPromptPart):
                if part.tool_name is None:
                    yield chat.ChatCompletionUserMessageParam(role='user', content=part.model_response())
                else:
                    yield chat.ChatCompletionToolMessageParam(
                        role='tool',
                        tool_call_id=_guard_tool_call_id(t=part, model_source='Groq'),
                        content=part.model_response(),
                    )

GroqStreamedResponse dataclass

Bases: StreamedResponse

Implementation of StreamedResponse for Groq models.

Source code in pydantic_ai_slim/pydantic_ai/models/groq.py
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
@dataclass
class GroqStreamedResponse(StreamedResponse):
    """Implementation of `StreamedResponse` for Groq models."""

    _response: AsyncIterable[ChatCompletionChunk]
    _timestamp: datetime

    async def _get_event_iterator(self) -> AsyncIterator[ModelResponseStreamEvent]:
        async for chunk in self._response:
            self._usage += _map_usage(chunk)

            try:
                choice = chunk.choices[0]
            except IndexError:
                continue

            # Handle the text part of the response
            content = choice.delta.content
            if content is not None:
                yield self._parts_manager.handle_text_delta(vendor_part_id='content', content=content)

            # Handle the tool calls
            for dtc in choice.delta.tool_calls or []:
                maybe_event = self._parts_manager.handle_tool_call_delta(
                    vendor_part_id=dtc.index,
                    tool_name=dtc.function and dtc.function.name,
                    args=dtc.function and dtc.function.arguments,
                    tool_call_id=dtc.id,
                )
                if maybe_event is not None:
                    yield maybe_event

    def timestamp(self) -> datetime:
        return self._timestamp